3.11.49 \(\int \frac {(2-5 x) (2+5 x+3 x^2)^{3/2}}{x^{5/2}} \, dx\) [1049]

3.11.49.1 Optimal result
3.11.49.2 Mathematica [C] (verified)
3.11.49.3 Rubi [A] (verified)
3.11.49.4 Maple [A] (verified)
3.11.49.5 Fricas [C] (verification not implemented)
3.11.49.6 Sympy [F]
3.11.49.7 Maxima [F]
3.11.49.8 Giac [F]
3.11.49.9 Mupad [F(-1)]

3.11.49.1 Optimal result

Integrand size = 25, antiderivative size = 183 \[ \int \frac {(2-5 x) \left (2+5 x+3 x^2\right )^{3/2}}{x^{5/2}} \, dx=-\frac {34 \sqrt {x} (2+3 x)}{3 \sqrt {2+5 x+3 x^2}}+\frac {2 (2-x) \sqrt {2+5 x+3 x^2}}{\sqrt {x}}-\frac {2 (2+3 x) \left (2+5 x+3 x^2\right )^{3/2}}{3 x^{3/2}}+\frac {34 \sqrt {2} (1+x) \sqrt {\frac {2+3 x}{1+x}} E\left (\arctan \left (\sqrt {x}\right )|-\frac {1}{2}\right )}{3 \sqrt {2+5 x+3 x^2}}-\frac {14 \sqrt {2} (1+x) \sqrt {\frac {2+3 x}{1+x}} \operatorname {EllipticF}\left (\arctan \left (\sqrt {x}\right ),-\frac {1}{2}\right )}{\sqrt {2+5 x+3 x^2}} \]

output
-2/3*(2+3*x)*(3*x^2+5*x+2)^(3/2)/x^(3/2)-34/3*(2+3*x)*x^(1/2)/(3*x^2+5*x+2 
)^(1/2)+34/3*(1+x)^(3/2)*(1/(1+x))^(1/2)*EllipticE(x^(1/2)/(1+x)^(1/2),1/2 
*I*2^(1/2))*2^(1/2)*((2+3*x)/(1+x))^(1/2)/(3*x^2+5*x+2)^(1/2)-14*(1+x)^(3/ 
2)*(1/(1+x))^(1/2)*EllipticF(x^(1/2)/(1+x)^(1/2),1/2*I*2^(1/2))*2^(1/2)*(( 
2+3*x)/(1+x))^(1/2)/(3*x^2+5*x+2)^(1/2)+2*(2-x)*(3*x^2+5*x+2)^(1/2)/x^(1/2 
)
 
3.11.49.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 21.17 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.89 \[ \int \frac {(2-5 x) \left (2+5 x+3 x^2\right )^{3/2}}{x^{5/2}} \, dx=\frac {-34 i \sqrt {2} \sqrt {1+\frac {1}{x}} \sqrt {3+\frac {2}{x}} x^{5/2} E\left (i \text {arcsinh}\left (\frac {\sqrt {\frac {2}{3}}}{\sqrt {x}}\right )|\frac {3}{2}\right )-2 \left (8+74 x+195 x^2+219 x^3+117 x^4+27 x^5+4 i \sqrt {2} \sqrt {1+\frac {1}{x}} \sqrt {3+\frac {2}{x}} x^{5/2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {\frac {2}{3}}}{\sqrt {x}}\right ),\frac {3}{2}\right )\right )}{3 x^{3/2} \sqrt {2+5 x+3 x^2}} \]

input
Integrate[((2 - 5*x)*(2 + 5*x + 3*x^2)^(3/2))/x^(5/2),x]
 
output
((-34*I)*Sqrt[2]*Sqrt[1 + x^(-1)]*Sqrt[3 + 2/x]*x^(5/2)*EllipticE[I*ArcSin 
h[Sqrt[2/3]/Sqrt[x]], 3/2] - 2*(8 + 74*x + 195*x^2 + 219*x^3 + 117*x^4 + 2 
7*x^5 + (4*I)*Sqrt[2]*Sqrt[1 + x^(-1)]*Sqrt[3 + 2/x]*x^(5/2)*EllipticF[I*A 
rcSinh[Sqrt[2/3]/Sqrt[x]], 3/2]))/(3*x^(3/2)*Sqrt[2 + 5*x + 3*x^2])
 
3.11.49.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.03, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {1230, 27, 1230, 27, 1240, 1503, 1413, 1456}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(2-5 x) \left (3 x^2+5 x+2\right )^{3/2}}{x^{5/2}} \, dx\)

\(\Big \downarrow \) 1230

\(\displaystyle -\frac {2}{5} \int \frac {5 (3 x+2) \sqrt {3 x^2+5 x+2}}{2 x^{3/2}}dx-\frac {2 (3 x+2) \left (3 x^2+5 x+2\right )^{3/2}}{3 x^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\int \frac {(3 x+2) \sqrt {3 x^2+5 x+2}}{x^{3/2}}dx-\frac {2 (3 x+2) \left (3 x^2+5 x+2\right )^{3/2}}{3 x^{3/2}}\)

\(\Big \downarrow \) 1230

\(\displaystyle \frac {2}{3} \int -\frac {3 (17 x+14)}{2 \sqrt {x} \sqrt {3 x^2+5 x+2}}dx+\frac {2 (2-x) \sqrt {3 x^2+5 x+2}}{\sqrt {x}}-\frac {2 (3 x+2) \left (3 x^2+5 x+2\right )^{3/2}}{3 x^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\int \frac {17 x+14}{\sqrt {x} \sqrt {3 x^2+5 x+2}}dx+\frac {2 (2-x) \sqrt {3 x^2+5 x+2}}{\sqrt {x}}-\frac {2 (3 x+2) \left (3 x^2+5 x+2\right )^{3/2}}{3 x^{3/2}}\)

\(\Big \downarrow \) 1240

\(\displaystyle -2 \int \frac {17 x+14}{\sqrt {3 x^2+5 x+2}}d\sqrt {x}+\frac {2 (2-x) \sqrt {3 x^2+5 x+2}}{\sqrt {x}}-\frac {2 (3 x+2) \left (3 x^2+5 x+2\right )^{3/2}}{3 x^{3/2}}\)

\(\Big \downarrow \) 1503

\(\displaystyle -2 \left (14 \int \frac {1}{\sqrt {3 x^2+5 x+2}}d\sqrt {x}+17 \int \frac {x}{\sqrt {3 x^2+5 x+2}}d\sqrt {x}\right )+\frac {2 (2-x) \sqrt {3 x^2+5 x+2}}{\sqrt {x}}-\frac {2 (3 x+2) \left (3 x^2+5 x+2\right )^{3/2}}{3 x^{3/2}}\)

\(\Big \downarrow \) 1413

\(\displaystyle -2 \left (17 \int \frac {x}{\sqrt {3 x^2+5 x+2}}d\sqrt {x}+\frac {7 \sqrt {2} (x+1) \sqrt {\frac {3 x+2}{x+1}} \operatorname {EllipticF}\left (\arctan \left (\sqrt {x}\right ),-\frac {1}{2}\right )}{\sqrt {3 x^2+5 x+2}}\right )+\frac {2 (2-x) \sqrt {3 x^2+5 x+2}}{\sqrt {x}}-\frac {2 (3 x+2) \left (3 x^2+5 x+2\right )^{3/2}}{3 x^{3/2}}\)

\(\Big \downarrow \) 1456

\(\displaystyle -2 \left (\frac {7 \sqrt {2} (x+1) \sqrt {\frac {3 x+2}{x+1}} \operatorname {EllipticF}\left (\arctan \left (\sqrt {x}\right ),-\frac {1}{2}\right )}{\sqrt {3 x^2+5 x+2}}+17 \left (\frac {\sqrt {x} (3 x+2)}{3 \sqrt {3 x^2+5 x+2}}-\frac {\sqrt {2} (x+1) \sqrt {\frac {3 x+2}{x+1}} E\left (\arctan \left (\sqrt {x}\right )|-\frac {1}{2}\right )}{3 \sqrt {3 x^2+5 x+2}}\right )\right )+\frac {2 (2-x) \sqrt {3 x^2+5 x+2}}{\sqrt {x}}-\frac {2 (3 x+2) \left (3 x^2+5 x+2\right )^{3/2}}{3 x^{3/2}}\)

input
Int[((2 - 5*x)*(2 + 5*x + 3*x^2)^(3/2))/x^(5/2),x]
 
output
(2*(2 - x)*Sqrt[2 + 5*x + 3*x^2])/Sqrt[x] - (2*(2 + 3*x)*(2 + 5*x + 3*x^2) 
^(3/2))/(3*x^(3/2)) - 2*(17*((Sqrt[x]*(2 + 3*x))/(3*Sqrt[2 + 5*x + 3*x^2]) 
 - (Sqrt[2]*(1 + x)*Sqrt[(2 + 3*x)/(1 + x)]*EllipticE[ArcTan[Sqrt[x]], -1/ 
2])/(3*Sqrt[2 + 5*x + 3*x^2])) + (7*Sqrt[2]*(1 + x)*Sqrt[(2 + 3*x)/(1 + x) 
]*EllipticF[ArcTan[Sqrt[x]], -1/2])/Sqrt[2 + 5*x + 3*x^2])
 

3.11.49.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1230
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(e*f*(m + 2*p + 2) - 
 d*g*(2*p + 1) + e*g*(m + 1)*x)*((a + b*x + c*x^2)^p/(e^2*(m + 1)*(m + 2*p 
+ 2))), x] + Simp[p/(e^2*(m + 1)*(m + 2*p + 2))   Int[(d + e*x)^(m + 1)*(a 
+ b*x + c*x^2)^(p - 1)*Simp[g*(b*d + 2*a*e + 2*a*e*m + 2*b*d*p) - f*b*e*(m 
+ 2*p + 2) + (g*(2*c*d + b*e + b*e*m + 4*c*d*p) - 2*c*e*f*(m + 2*p + 2))*x, 
 x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && GtQ[p, 0] && (LtQ[m, - 
1] || EqQ[p, 1] || (IntegerQ[p] &&  !RationalQ[m])) && NeQ[m, -1] &&  !ILtQ 
[m + 2*p + 1, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
 

rule 1240
Int[((f_) + (g_.)*(x_))/(Sqrt[x_]*Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]), 
x_Symbol] :> Simp[2   Subst[Int[(f + g*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x, 
 Sqrt[x]], x] /; FreeQ[{a, b, c, f, g}, x]
 

rule 1413
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b 
^2 - 4*a*c, 2]}, Simp[(2*a + (b - q)*x^2)*(Sqrt[(2*a + (b + q)*x^2)/(2*a + 
(b - q)*x^2)]/(2*a*Rt[(b - q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]))*EllipticF 
[ArcTan[Rt[(b - q)/(2*a), 2]*x], -2*(q/(b - q))], x] /; PosQ[(b - q)/a]] /; 
 FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1456
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[b^2 - 4*a*c, 2]}, Simp[x*((b - q + 2*c*x^2)/(2*c*Sqrt[a + b*x^2 + c*x^4 
])), x] - Simp[Rt[(b - q)/(2*a), 2]*(2*a + (b - q)*x^2)*(Sqrt[(2*a + (b + q 
)*x^2)/(2*a + (b - q)*x^2)]/(2*c*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[ArcTan 
[Rt[(b - q)/(2*a), 2]*x], -2*(q/(b - q))], x] /; PosQ[(b - q)/a]] /; FreeQ[ 
{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1503
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[d   Int[1/Sqrt[a + b*x^2 + c*x^4] 
, x], x] + Simp[e   Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b + q) 
/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]
 
3.11.49.4 Maple [A] (verified)

Time = 0.24 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.68

method result size
default \(\frac {9 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {6}\, \sqrt {-x}\, F\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right ) x -17 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {6}\, \sqrt {-x}\, E\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right ) x -162 x^{5}-702 x^{4}-1008 x^{3}-660 x^{2}-240 x -48}{9 \sqrt {3 x^{2}+5 x +2}\, x^{\frac {3}{2}}}\) \(125\)
risch \(-\frac {2 \left (27 x^{5}+117 x^{4}+168 x^{3}+110 x^{2}+40 x +8\right )}{3 x^{\frac {3}{2}} \sqrt {3 x^{2}+5 x +2}}-\frac {\left (\frac {14 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {-6 x}\, F\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )}{3 \sqrt {3 x^{3}+5 x^{2}+2 x}}+\frac {17 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {-6 x}\, \left (\frac {E\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )}{3}-F\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )\right )}{3 \sqrt {3 x^{3}+5 x^{2}+2 x}}\right ) \sqrt {x \left (3 x^{2}+5 x +2\right )}}{\sqrt {x}\, \sqrt {3 x^{2}+5 x +2}}\) \(203\)
elliptic \(\frac {\sqrt {x \left (3 x^{2}+5 x +2\right )}\, \left (-\frac {8 \sqrt {3 x^{3}+5 x^{2}+2 x}}{3 x^{2}}-\frac {20 \left (3 x^{2}+5 x +2\right )}{3 \sqrt {x \left (3 x^{2}+5 x +2\right )}}-6 x \sqrt {3 x^{3}+5 x^{2}+2 x}-16 \sqrt {3 x^{3}+5 x^{2}+2 x}-\frac {14 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {-6 x}\, F\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )}{3 \sqrt {3 x^{3}+5 x^{2}+2 x}}-\frac {17 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {-6 x}\, \left (\frac {E\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )}{3}-F\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )\right )}{3 \sqrt {3 x^{3}+5 x^{2}+2 x}}\right )}{\sqrt {x}\, \sqrt {3 x^{2}+5 x +2}}\) \(243\)

input
int((2-5*x)*(3*x^2+5*x+2)^(3/2)/x^(5/2),x,method=_RETURNVERBOSE)
 
output
1/9*(9*(6*x+4)^(1/2)*(3+3*x)^(1/2)*6^(1/2)*(-x)^(1/2)*EllipticF(1/2*(6*x+4 
)^(1/2),I*2^(1/2))*x-17*(6*x+4)^(1/2)*(3+3*x)^(1/2)*6^(1/2)*(-x)^(1/2)*Ell 
ipticE(1/2*(6*x+4)^(1/2),I*2^(1/2))*x-162*x^5-702*x^4-1008*x^3-660*x^2-240 
*x-48)/(3*x^2+5*x+2)^(1/2)/x^(3/2)
 
3.11.49.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.38 \[ \int \frac {(2-5 x) \left (2+5 x+3 x^2\right )^{3/2}}{x^{5/2}} \, dx=-\frac {2 \, {\left (41 \, \sqrt {3} x^{2} {\rm weierstrassPInverse}\left (\frac {28}{27}, \frac {80}{729}, x + \frac {5}{9}\right ) - 153 \, \sqrt {3} x^{2} {\rm weierstrassZeta}\left (\frac {28}{27}, \frac {80}{729}, {\rm weierstrassPInverse}\left (\frac {28}{27}, \frac {80}{729}, x + \frac {5}{9}\right )\right ) + 9 \, {\left (9 \, x^{3} + 24 \, x^{2} + 10 \, x + 4\right )} \sqrt {3 \, x^{2} + 5 \, x + 2} \sqrt {x}\right )}}{27 \, x^{2}} \]

input
integrate((2-5*x)*(3*x^2+5*x+2)^(3/2)/x^(5/2),x, algorithm="fricas")
 
output
-2/27*(41*sqrt(3)*x^2*weierstrassPInverse(28/27, 80/729, x + 5/9) - 153*sq 
rt(3)*x^2*weierstrassZeta(28/27, 80/729, weierstrassPInverse(28/27, 80/729 
, x + 5/9)) + 9*(9*x^3 + 24*x^2 + 10*x + 4)*sqrt(3*x^2 + 5*x + 2)*sqrt(x)) 
/x^2
 
3.11.49.6 Sympy [F]

\[ \int \frac {(2-5 x) \left (2+5 x+3 x^2\right )^{3/2}}{x^{5/2}} \, dx=- \int \left (- \frac {4 \sqrt {3 x^{2} + 5 x + 2}}{x^{\frac {5}{2}}}\right )\, dx - \int \frac {19 \sqrt {3 x^{2} + 5 x + 2}}{\sqrt {x}}\, dx - \int 15 \sqrt {x} \sqrt {3 x^{2} + 5 x + 2}\, dx \]

input
integrate((2-5*x)*(3*x**2+5*x+2)**(3/2)/x**(5/2),x)
 
output
-Integral(-4*sqrt(3*x**2 + 5*x + 2)/x**(5/2), x) - Integral(19*sqrt(3*x**2 
 + 5*x + 2)/sqrt(x), x) - Integral(15*sqrt(x)*sqrt(3*x**2 + 5*x + 2), x)
 
3.11.49.7 Maxima [F]

\[ \int \frac {(2-5 x) \left (2+5 x+3 x^2\right )^{3/2}}{x^{5/2}} \, dx=\int { -\frac {{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac {3}{2}} {\left (5 \, x - 2\right )}}{x^{\frac {5}{2}}} \,d x } \]

input
integrate((2-5*x)*(3*x^2+5*x+2)^(3/2)/x^(5/2),x, algorithm="maxima")
 
output
-integrate((3*x^2 + 5*x + 2)^(3/2)*(5*x - 2)/x^(5/2), x)
 
3.11.49.8 Giac [F]

\[ \int \frac {(2-5 x) \left (2+5 x+3 x^2\right )^{3/2}}{x^{5/2}} \, dx=\int { -\frac {{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac {3}{2}} {\left (5 \, x - 2\right )}}{x^{\frac {5}{2}}} \,d x } \]

input
integrate((2-5*x)*(3*x^2+5*x+2)^(3/2)/x^(5/2),x, algorithm="giac")
 
output
integrate(-(3*x^2 + 5*x + 2)^(3/2)*(5*x - 2)/x^(5/2), x)
 
3.11.49.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(2-5 x) \left (2+5 x+3 x^2\right )^{3/2}}{x^{5/2}} \, dx=\int -\frac {\left (5\,x-2\right )\,{\left (3\,x^2+5\,x+2\right )}^{3/2}}{x^{5/2}} \,d x \]

input
int(-((5*x - 2)*(5*x + 3*x^2 + 2)^(3/2))/x^(5/2),x)
 
output
int(-((5*x - 2)*(5*x + 3*x^2 + 2)^(3/2))/x^(5/2), x)